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An interactive H5P element has been excluded from this version of the text. You can view it online here: 

https://university.pressbooks.pub/chemistryucf/?p=21#h5p-1 

[[ This goes at the top of every Chapter Practice ]] 

1.1 Chemistry in Context: The Scientific Method [Go to section 1.1] 

1. Example 

Show Selected Solutions 

1. Example 

[[ ^ Put this hr between every blue box ]] 

Helpful Notes 

• For a/b/c ordered list: 

◦ <ol type="a"> 

• For changing the number in an ordered list: 

◦ <li value="#"> 

• Scientific Notation should always look like this, with the correct multiplication symbol 
(copied directly) and a space between it and the numbers and units: 
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◦ 9.50 × 104 J 
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Key Concepts 

• 1.1 Chemistry in Context: The Scientific Method 
• 1.2 Phases and Classification of Matter 
• 1.3 Physical and Chemical Properties 
• 1.4 Measurements 
• 1.5 Measurement Uncertainty, Accuracy, and Precision 
• 1.6 Mathematical Treatment of Measurement Results 

Your alarm goes off and, after hitting “snooze” once or twice, you pry yourself out of bed. You make 
a cup of coffee to help you get going, and then you shower, get dressed, eat breakfast, and check your 
phone for messages. On your way to school, you stop to fill your car’s gas tank, almost making you late 
for the first day of chemistry class. As you find a seat in the classroom, you read the question projected 
on the screen: “Welcome to class! Why should we study chemistry?” 

Do you have an answer? You may be studying chemistry because it fulfills an academic requirement, 
but if you consider your daily activities, you might find chemistry interesting for other reasons. Most 
everything you do and encounter during your day involves chemistry. Making coffee, cooking eggs, and 
toasting bread involve chemistry. The products you use—like soap and shampoo, the fabrics you wear, 
the electronics that keep you connected to your world, the gasoline that propels your car—all of these 
and more involve chemical substances and processes. Whether you are aware or not, chemistry is part 
of your everyday world. In this course, you will learn many of the essential principles underlying the 
chemistry of modern-day life. 
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Figure 1. Chemical substances and processes are essential for our existence, providing sustenance, 
keeping us clean and healthy, fabricating electronic devices, enabling transportation, and much more. 
(credit “left”: modification of work by “vxla”/Flickr; credit “left middle”: modification of work by “the 
Italian voice”/Flickr; credit “right middle”: modification of work by Jason Trim; credit “right”: 
modification of work by “gosheshe”/Flickr) 
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Learning Outcomes 

• Outline the historical development of chemistry 
• Provide examples of the importance of chemistry in everyday life 
• Describe the scientific method 
• Differentiate among hypotheses, theories, and laws 
• Provide examples illustrating macroscopic, microscopic, and symbolic domains 

Throughout human history, people have tried to convert matter into more useful forms. Our Stone Age 
ancestors chipped pieces of flint into useful tools and carved wood into statues and toys. These endeav-
ors involved changing the shape of a substance without changing the substance itself. But as our knowl-
edge increased, humans began to change the composition of the substances as well—clay was converted 
into pottery, hides were cured to make garments, copper ores were transformed into copper tools and 
weapons, and grain was made into bread. 

Humans began to practice chemistry when they learned to control fire and use it to cook, make pottery, 
and smelt metals. Subsequently, they began to separate and use specific components of matter. A variety 
of drugs such as aloe, myrrh, and opium were isolated from plants. Dyes, such as indigo and Tyrian pur-
ple, were extracted from plant and animal matter. Metals were combined to form alloys—for example, 
copper and tin were mixed together to make brass—and more elaborate smelting techniques produced 
iron. Alkalis were extracted from ashes, and soaps were prepared by combining these alkalis with fats. 
Alcohol was produced by fermentation and purified by distillation. 

Attempts to understand the behavior of matter extend back for more than 2500 years. As early as the 
sixth century BC, Greek philosophers discussed a system in which water was the basis of all things. You 
may have heard of the Greek postulate that matter consists of four elements: earth, air, fire, and water. 
Subsequently, an amalgamation of chemical technologies and philosophical speculations were spread 
from Egypt, China, and the eastern Mediterranean by alchemists, who endeavored to transform “base 
metals” such as lead into “noble metals” like gold, and to create elixirs to cure disease and extend life 
(Figure 1.1.1). 
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Figure 1.1.1 This portrayal shows an alchemist’s workshop circa 1580. Although 
alchemy made some useful contributions to how to manipulate matter, it was not 
scientific by modern standards. (credit: Chemical Heritage Foundation) 

From alchemy came the historical progressions that led to modern chemistry: the isolation of drugs from 
natural sources, metallurgy, and the dye industry. Today, chemistry continues to deepen our understand-
ing and improve our ability to harness and control the behavior of matter. 

Chemistry: The Central Science 

Chemistry is sometimes referred to as “the central science” due to its interconnectedness with a vast 
array of other STEM disciplines (STEM stands for areas of study in the science, technology, engineer-
ing, and math fields). Chemistry and the language of chemists play vital roles in biology, medicine, 
materials science, forensics, environmental science, and many other fields (Figure 1.1.2). 
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Figure 1.1.2 Knowledge of chemistry is central to understanding a wide range of scientific disciplines. 
This diagram shows just some of the interrelationships between chemistry and other fields. 

The basic principles of physics are essential for understanding many aspects of chemistry, and there 
is extensive overlap between many subdisciplines within the two fields, such as chemical physics and 
nuclear chemistry. Mathematics, computer science, and information theory provide important tools that 
help us calculate, interpret, describe, and generally make sense of the chemical world. Biology and 
chemistry converge in biochemistry, which is crucial to understanding the many complex factors and 
processes that keep living organisms (such as us) alive. Chemical engineering, materials science, and 
nanotechnology combine chemical principles and empirical findings to produce useful substances, rang-
ing from gasoline to fabrics to electronics. Agriculture, food science, veterinary science, and brewing 
and wine making help provide sustenance in the form of food and drink to the world’s population. 
Medicine, pharmacology, biotechnology, and botany identify and produce substances that help keep 
us healthy. Environmental science, geology, oceanography, and atmospheric science incorporate many 
chemical ideas to help us better understand and protect our physical world. Chemical ideas are used to 
help understand the universe in astronomy and cosmology. 

What are some changes in matter that are essential to daily life? Digesting and assimilating food, syn-
thesizing polymers that are used to make clothing, containers, cookware, and credit cards, and refining 
crude oil into gasoline and other products are just a few examples. As you proceed through this course, 
you will discover many different examples of changes in the composition and structure of matter, how to 
classify these changes and how they occurred, their causes, the changes in energy that accompany them, 
and the principles and laws involved. As you learn about these things, you will be learning chemistry, 
the study of the composition, properties, and interactions of matter. The practice of chemistry is not lim-
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ited to chemistry books or laboratories: It happens whenever someone is involved in changes in matter 
or in conditions that may lead to such changes. 

The Scientific Method 

Chemistry is a science based on observation and experimentation. Doing chemistry involves attempting 
to answer questions and explain observations in terms of the laws and theories of chemistry, using pro-
cedures that are accepted by the scientific community. There is no single route to answering a question 
or explaining an observation, but there is an aspect common to every approach: Each uses knowledge 
based on experiments that can be reproduced to verify the results. Some routes involve a hypothesis, 
a tentative explanation of observations that acts as a guide for gathering and checking information. We 
test a hypothesis by experimentation, calculation, and/or comparison with the experiments of others and 
then refine it as needed. 

Some hypotheses are attempts to explain the behavior that is summarized in laws. The laws of science 
summarize a vast number of experimental observations, and describe or predict some facet of the natural 
world. If such a hypothesis turns out to be capable of explaining a large body of experimental data, it can 
reach the status of a theory. Scientific theories are well-substantiated, comprehensive, testable expla-
nations of particular aspects of nature. Theories are accepted because they provide satisfactory expla-
nations, but they can be modified if new data become available. The path of discovery that leads from 
question and observation to law or hypothesis to theory, combined with experimental verification of the 
hypothesis and any necessary modification of the theory, is called the scientific method (Figure 1.1.3). 
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Figure 1.1.3 The scientific method follows a process similar to the one shown in this diagram. All the 
key components are shown, in roughly the right order. Scientific progress is seldom neat and clean: It 
requires open inquiry and the reworking of questions and ideas in response to findings. 

The Domains of Chemistry 

Chemists study and describe the behavior of matter and energy in three different domains: macroscopic, 
microscopic, and symbolic. These domains provide different ways of considering and describing chem-
ical behavior. 

Macro is a Greek word that means “large.” The macroscopic domain is familiar to us: It is the realm 
of everyday things that are large enough to be sensed directly by human sight or touch. In daily life, 
this includes the food you eat and the breeze you feel on your face. The macroscopic domain includes 
everyday and laboratory chemistry, where we observe and measure physical and chemical properties, or 
changes such as density, solubility, and flammability. 

Micro also comes from Greek and means “small.” The microscopic domain of chemistry is often visited 
in the imagination. Some aspects of the microscopic domains are visible through standard optical micro-
scopes, like many biological cells. More sophisticated instruments are capable of imaging even smaller 
entities such as molecules and atoms (see Figure 1.1.4 (b)). 
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However, most of the subjects in the microscopic domain of chemistry are too small to be seen even with 
the most advanced microscopes and may only be pictured in the mind. Other components of the micro-
scopic domain include ions and electrons, protons and neutrons, and chemical bonds, each of which is 
far too small to see. 

The symbolic domain contains the specialized language used to represent components of the macro-
scopic and microscopic domains. Chemical symbols (such as those used in the periodic table), chemical 
formulas, and chemical equations are part of the symbolic domain, as are graphs, drawings and calcu-
lations. These symbols play an important role in chemistry because they help interpret the behavior of 
the macroscopic domain in terms of the components of the microscopic domain. One of the challenges 
for students learning chemistry is recognizing that the same symbols can represent different things in the 
macroscopic and microscopic domains, and one of the features that makes chemistry fascinating is the 
use of a domain that must be imagined to explain behavior in a domain that can be observed. 

A helpful way to understand the three domains is via the essential and ubiquitous substance of water. 
That water is a liquid at moderate temperatures, will freeze to form a solid at lower temperatures, and 
boil to form a gas at higher temperatures (Figure 1.1.4) are macroscopic observations. But some proper-
ties of water fall into the microscopic domain—what we cannot observe with the naked eye. The descrip-
tion of water as comprised of two hydrogen atoms and one oxygen atom, and the explanation of freezing 
and boiling in terms of attractions between these molecules, is within the microscopic arena. The for-
mula , which can describe water at either the macroscopic or microscopic levels, is an example of 
the symbolic domain. The abbreviations ( g ) for gas, (s ) for solid, and (l ) for liquid are also symbolic. 
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Figure 1.1.4 (a) Moisture in the air, icebergs, and the ocean represent water in the macroscopic domain. 
(b) At the molecular level (microscopic domain), gas molecules are far apart and disorganized, solid water 
molecules are close together and organized, and liquid molecules are close together and disorganized. (c) 
The formula [latex]\ce{H2O}[/latex] symbolizes water, and (g), (s), and (l) symbolize its phases. Note that 
clouds are actually comprised of either very small liquid water droplets or solid water crystals; gaseous 
water in our atmosphere is not visible to the naked eye, although it may be sensed as humidity. (credit a: 
modification of work by “Gorkaazk”/Wikimedia Commons) 

Key Concepts and Summary 

Chemistry deals with the composition, structure, and properties of matter, and the ways by which various 
forms of matter may be interconverted. Thus, it occupies a central place in the study and practice of sci-
ence and technology. Chemists use the scientific method to perform experiments, pose hypotheses, and 
formulate laws and develop theories, so that they can better understand the behavior of the natural world. 
To do so, they operate in the macroscopic, microscopic, and symbolic domains. Chemists measure, ana-
lyze, purify, and synthesize a wide variety of substances that are important to our lives. 
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Try It 

1. Identify each of the following statements as being most similar to a hypothesis, a law, or a theory. 
Explain your reasoning. 

a. Falling barometric pressure precedes the onset of bad weather. 
b. All life on earth has evolved from a common, primitive organism through the process of nat-

ural selection 
c. My truck’s gas mileage has dropped significantly, probably because it’s due for a tune-up. 

2. Identify each of the following statements as being most similar to a hypothesis, a law, or a theory. 
Explain your reasoning. 

a. The pressure of a sample of gas is directly proportional to the temperature of the gas. 
b. Matter consists of tiny particles that can combine in specific ratios to form substances with 

specific properties. 
c. At a higher temperature, solids (such as salt or sugar) will dissolve better in water. 

3. Identify each of the underlined items as a part of either the macroscopic domain, the microscopic 
domain, or the symbolic domain of chemistry. For those in the symbolic domain, indicate whether 
they are symbols for a macroscopic or a microscopic feature. 

a. A certain molecule contains one  atom and one  atom. 
b. Copper wire has a density of about 8 g/cm3. 
c. The bottle contains 15 grams of  powder. 
d. A sulfur molecule is composed of eight sulfur atoms. 

Show Solutions 

2. The answers are as follows: 

a. law (states a consistently observed phenomenon, can be used for prediction) 
b. theory (a widely accepted explanation of the behavior of matter) 
c. hypothesis (a tentative explanation, can be investigated by experimentation) 

3. The answers are as follows: 

a. symbolic, microscopic 
b. macroscopic 
c. symbolic, macroscopic 
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d. microscopic 

See Chapter 1.1 Practice for additional problems related to Chemistry in Context: The Scientific 
Method. 

Glossary 

chemistry: study of the composition, properties, and interactions of matter 

hypothesis: tentative explanation of observations that acts as a guide for gathering and checking infor-
mation 

law: statement that summarizes a vast number of experimental observations, and describes or predicts 
some aspect of the natural world 

macroscopic domain: realm of everyday things that are large enough to sense directly by human sight 
and touch 

microscopic domain: realm of things that are much too small to be sensed directly 

scientific method: path of discovery that leads from question and observation to law or hypothesis to 
theory, combined with experimental verification of the hypothesis and any necessary modification of the 
theory 

symbolic domain: specialized language used to represent components of the macroscopic and micro-
scopic domains, such as chemical symbols, chemical formulas, chemical equations, graphs, drawings, 
and calculations 

theory: well-substantiated, comprehensive, testable explanation of a particular aspect of nature 

Licenses and Attributions (Click to expand) 
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Learning Outcomes 

• Describe the basic properties of each physical state of matter: solid, liquid, and gas 
• Distinguish between mass and weight 
• Apply the law of conservation of matter 
• Classify matter as an element, compound, homogeneous mixture, or heterogeneous mixture with 

regard to its physical state and composition 
• Define and give examples of atoms and molecules 

Matter is defined as anything that occupies space and has mass, and it is all around us. Solids and liquids 
are more obviously matter: We can see that they take up space, and their weight tells us that they have 
mass. Gases are also matter; if gases did not take up space, a balloon would stay collapsed rather than 
inflate when filled with gas. 

Solids, liquids, and gases are the three states of matter commonly found on earth (Figure 1.2.1). A solid 

is rigid and possesses a definite shape. A liquid flows and takes the shape of a container, except that it 
forms a flat or slightly curved upper surface when acted upon by gravity. (In zero gravity, liquids assume 
a spherical shape.) Both liquid and solid samples have volumes that are very nearly independent of pres-
sure. A gas takes both the shape and volume of its container. 
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Figure 1.2.1 The three most common states or phases of matter are solid, liquid, and gas. 

A fourth state of matter, plasma, occurs naturally in the interiors of stars. A plasma is a gaseous state 
of matter that contains appreciable numbers of electrically charged particles (Figure 1.2.2). The pres-
ence of these charged particles imparts unique properties to plasmas that justify their classification as a 
state of matter distinct from gases. In addition to stars, plasmas are found in some other high-tempera-
ture environments (both natural and man-made), such as lightning strikes, certain television screens, and 
specialized analytical instruments used to detect trace amounts of metals. 
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Figure 1.2.2 A plasma torch can be used to cut metal. (credit: 
“Hypertherm”/Wikimedia Commons) 

Some samples of matter appear to have properties of solids, liquids, and/or gases at the same time. This 
can occur when the sample is composed of many small pieces. For example, we can pour sand as if it 
were a liquid because it is composed of many small grains of solid sand. Matter can also have properties 
of more than one state when it is a mixture, such as with clouds. Clouds appear to behave somewhat like 
gases, but they are actually mixtures of air (gas) and tiny particles of water (liquid or solid). 

The mass of an object is a measure of the amount of matter in it. One way to measure an object’s mass 
is to measure the force it takes to accelerate the object. It takes much more force to accelerate a car than 
a bicycle because the car has much more mass. A more common way to determine the mass of an object 
is to use a balance to compare its mass with a standard mass. 

Although weight is related to mass, it is not the same thing. Weight refers to the force that gravity 
exerts on an object. This force is directly proportional to the mass of the object. The weight of an object 
changes as the force of gravity changes, but its mass does not. An astronaut’s mass does not change just 
because she goes to the moon. But her weight on the moon is only one-sixth her earth-bound weight 
because the moon’s gravity is only one-sixth that of the earth’s. She may feel “weightless” during her 
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trip when she experiences negligible external forces (gravitational or any other), although she is, of 
course, never “massless.” 

The law of conservation of matter summarizes many scientific observations about matter: It states that 
there is no detectable change in the total quantity of matter present when matter converts from one type 
to another (a chemical change) or changes among solid, liquid, or gaseous states (a physical change). 
Brewing beer and the operation of batteries provide examples of the conservation of matter (Figure 
1.2.3). During the brewing of beer, the ingredients (water, yeast, grains, malt, hops, and sugar) are con-
verted into beer (water, alcohol, carbonation, and flavoring substances) with no actual loss of substance. 
This is most clearly seen during the bottling process, when glucose turns into ethanol and carbon diox-
ide, and the total mass of the substances does not change. This can also be seen in a lead-acid car battery: 
The original substances (lead, lead oxide, and sulfuric acid), which are capable of producing electricity, 
are changed into other substances (lead sulfate and water) that do not produce electricity, with no change 
in the actual amount of matter. 

Figure 1.2.3 (a) The mass of beer precursor materials is the same as the mass of beer produced: Sugar has 
become alcohol and carbonation. (b) The mass of the lead, lead oxide plates, and sulfuric acid that goes 
into the production of electricity is exactly equal to the mass of lead sulfate and water that is formed. 

Although this conservation law holds true for all conversions of matter, convincing examples are few 
and far between because, outside of the controlled conditions in a laboratory, we seldom collect all of 
the material that is produced during a particular conversion. For example, when you eat, digest, and 
assimilate food, all of the matter in the original food is preserved. But because some of the matter is 
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incorporated into your body, and much is excreted as various types of waste, it is challenging to verify 
by measurement. 

Classifying Matter 

We can classify matter into several categories. Two broad categories are mixtures and pure substances. 
A pure substance has a constant composition. All specimens of a pure substance have exactly the same 
makeup and properties. Any sample of sucrose (table sugar) consists of 42.1% carbon, 6.5% hydrogen, 
and 51.4% oxygen by mass. Any sample of sucrose also has the same physical properties, such as melt-
ing point, color, and sweetness, regardless of the source from which it is isolated. 

We can divide pure substances into two classes: elements and compounds. Pure substances that cannot 
be broken down into simpler substances by chemical changes are called elements. Iron, silver, gold, 
aluminum, sulfur, oxygen, and copper are familiar examples of the more than 100 known elements, of 
which about 90 occur naturally on the earth, and two dozen or so have been created in laboratories. 

Pure substances that can be broken down by chemical changes are called compounds. This breakdown 
may produce either elements or other compounds, or both. Mercury(II) oxide, an orange, crystalline 
solid, can be broken down by heat into the elements mercury and oxygen (Figure 1.2.4). When heated 
in the absence of air, the compound sucrose is broken down into the element carbon and the com-
pound water. (The initial stage of this process, when the sugar is turning brown, is known as carameliza-
tion—this is what imparts the characteristic sweet and nutty flavor to caramel apples, caramelized 
onions, and caramel). Silver(I) chloride is a white solid that can be broken down into its elements, silver 
and chlorine, by absorption of light. This property is the basis for the use of this compound in photo-
graphic films and photochromic eyeglasses (those with lenses that darken when exposed to light). 

Figure 1.2.4 (a)The compound mercury(II) oxide, (b)when heated, (c) decomposes into silvery droplets of 
liquid mercury and invisible oxygen gas. (credit: modification of work by Paul Flowers) 
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The properties of combined elements are different from those in the free, or uncombined, state. For 
example, white crystalline sugar (sucrose) is a compound resulting from the chemical combination of the 
element carbon, which is a black solid in one of its uncombined forms, and the two elements hydrogen 
and oxygen, which are colorless gases when uncombined. Free sodium, an element that is a soft, shiny, 
metallic solid, and free chlorine, an element that is a yellow-green gas, combine to form sodium chloride 
(table salt), a compound that is a white, crystalline solid. 

A mixture is composed of two or more types of matter that can be present in varying amounts and can 
be separated by physical changes, such as evaporation (you will learn more about this later). A mixture 
with a composition that varies from point to point is called a heterogeneous mixture. Italian dressing is 
an example of a heterogeneous mixture (Figure 1.2.5). Its composition can vary because we can make 
it from varying amounts of oil, vinegar, and herbs. It is not the same from point to point throughout the 
mixture—one drop may be mostly vinegar, whereas a different drop may be mostly oil or herbs because 
the oil and vinegar separate and the herbs settle. Other examples of heterogeneous mixtures are choco-
late chip cookies (we can see the separate bits of chocolate, nuts, and cookie dough) and granite (we can 
see the quartz, mica, feldspar, and more). 

A homogeneous mixture, also called a solution, exhibits a uniform composition and appears visually 
the same throughout. An example of a solution is a sports drink, consisting of water, sugar, coloring, fla-
voring, and electrolytes mixed together uniformly (Figure 1.2.5). Each drop of a sports drink tastes the 
same because each drop contains the same amounts of water, sugar, and other components. Note that the 
composition of a sports drink can vary—it could be made with somewhat more or less sugar, flavoring, 
or other components, and still be a sports drink. Other examples of homogeneous mixtures include air, 
maple syrup, gasoline, and a solution of salt in water. 

Figure 1.2.5 (a) Oil and vinegar salad dressing is a heterogeneous mixture because its composition is not 
uniform throughout. (b) A commercial sports drink is a homogeneous mixture because its composition 
is uniform throughout. (credit a “left”: modification of work by John Mayer; credit a “right”: 
modification of work by Umberto Salvagnin; credit b “left: modification of work by Jeff Bedford) 
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Although there are just over 100 elements, tens of millions of chemical compounds result from different 
combinations of these elements. Each compound has a specific composition and possesses definite 
chemical and physical properties by which we can distinguish it from all other compounds. And, of 
course, there are innumerable ways to combine elements and compounds to form different mixtures. A 
summary of how to distinguish between the various major classifications of matter is shown in (Figure 
1.2.6). 

Figure 1.2.6 Depending on its properties, a given substance can be classified as a homogeneous mixture, 
a heterogeneous mixture, a compound, or an element. 

Eleven elements make up about 99% of the earth’s crust and atmosphere (Table 1.2.1). Oxygen consti-
tutes nearly one-half and silicon about one-quarter of the total quantity of these elements. A majority 
of elements on earth are found in chemical combinations with other elements; about one-quarter of the 
elements are also found in the free state. 
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Table 1.2.1 Elemental Composition of Earth 

Element Symbol Percent Mass Element Symbol Percent Mass 

oxygen O 49.20 chlorine 0.19 

silicon Si 25.67 phosphorus 0.11 

aluminum Al 7.50 manganese 0.09 

iron Fe 4.71 carbon 0.08 

calcium Ca 3.39 sulfur 0.06 

sodium Na 2.63 barium 0.04 

potassium K 2.40 nitrogen 0.03 

magnesium Mg 1.93 fluorine 0.03 

hydrogen H 0.87 strontium 0.02 

titanium Ti 0.58 all others – 0.47 

Atoms and Molecules 

An atom is the smallest particle of an element that has the properties of that element and can enter into 
a chemical combination. 

Consider the element gold, for example. Imagine cutting a gold nugget in half, then cutting one of the 
halves in half, and repeating this process until a piece of gold remained that was so small that it could 
not be cut in half (regardless of how tiny your knife may be). This minimally sized piece of gold is an 
atom (from the Greek atomos, meaning “indivisible”) (Figure 1.2.7). This atom would no longer be gold 
if it were divided any further. 
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Figure 1.2.7 (a) This photograph shows a gold nugget. uniform stripes of light and dark gold, as seen 
through microscope (b) A scanning-tunneling microscope (STM) can generate views of the surfaces of 
solids, such as this image of a gold crystal. Each sphere represents one gold atom. (credit a: 
modification of work by United States Geological Survey; credit b: modification of work by 
“Erwinrossen”/Wikimedia Commons) 

The first suggestion that matter is composed of atoms is attributed to the Greek philosophers Leucippus 
and Democritus, who developed their ideas in the 5th century BCE. However, it was not until the early 
nineteenth century that John Dalton (1766–1844), a British schoolteacher with a keen interest in sci-
ence, supported this hypothesis with quantitative measurements. Since that time, repeated experiments 
have confirmed many aspects of this hypothesis, and it has become one of the central theories of chem-
istry. Other aspects of Dalton’s atomic theory are still used but with minor revisions (details of Dalton’s 
theory are provided in the module on atoms and molecules). 

An atom is so small that its size is difficult to imagine. One of the smallest things we can see with 
our unaided eye is a single thread of a spider web: These strands are about 1/10,000 of a centimeter 
(0.00001 cm) in diameter. Although the cross-section of one strand is almost impossible to see without 
a microscope, it is huge on an atomic scale. A single carbon atom in the web has a diameter of about 
0.000000015 centimeter, and it would take about 7000 carbon atoms to span the diameter of the strand. 
To put this in perspective, if a carbon atom were the size of a dime, the cross-section of one strand would 
be larger than a football field, which would require about 150 million carbon atom “dimes” to cover it. 
(Figure 1.2.8) shows increasingly close microscopic and atomic-level views of ordinary cotton. 
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Figure 1.2.8 These images provide an increasingly closer view: (a) a cotton boll, (b) a single cotton fiber 
viewed under an optical microscope (magnified 40 times), (c) an image of a cotton fiber obtained with an 
electron microscope (much higher magnification than with the optical microscope); and (d and e) 
atomic-level models of the fiber (spheres of different colors represent atoms of different elements). 
(credit c: modification of work by “Featheredtar”/Wikimedia Commons) 

An atom is so light that its mass is also difficult to imagine. A billion lead atoms (1,000,000,000 atoms) 
weigh about 3 × 10-13 g (grams), a mass that is far too light to be weighed on even the world’s most 
sensitive balances. It would require over 300,000,000,000,000 lead atoms (300 trillion, or 3 × 1014) to 
be weighed, and they would weigh only 0.0000001 gram. 

It is rare to find collections of individual atoms. Only a few elements, such as the gases helium, neon, 
and argon, consist of a collection of individual atoms that move about independently of one another. 
Other elements, such as the gases hydrogen, nitrogen, oxygen, and chlorine, are composed of units that 
consist of pairs of atoms (Figure 1.2.9). One form of the element phosphorus consists of units composed 
of four phosphorus atoms. The element sulfur exists in various forms, one of which consists of units 
composed of eight sulfur atoms. These units are called molecules. A molecule consists of two or more 
atoms joined by strong forces called chemical bonds. The atoms in a molecule move around as a unit, 
much like the cans of soda in a six-pack or a bunch of keys joined together on a single key ring. A mol-
ecule may consist of two or more identical atoms, as in the molecules found in the elements hydrogen, 
oxygen, and sulfur, or it may consist of two or more different atoms, as in the molecules found in water. 
Each water molecule is a unit that contains two hydrogen atoms and one oxygen atom. Each glucose 
molecule is a unit that contains 6 carbon atoms, 12 hydrogen atoms, and 6 oxygen atoms. Like atoms, 
molecules are incredibly small and light. If an ordinary glass of water were enlarged to the size of the 
earth, the water molecules inside it would be about the size of golf balls. 
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Figure 1.2.9 The elements hydrogen, oxygen, phosphorus, and sulfur form molecules consisting of two or 
more atoms of the same element. The compounds water, carbon dioxide, and glucose consist of 
combinations of atoms of different elements. 

Key Concepts and Summary 

Matter is anything that occupies space and has mass. The basic building block of matter is the atom, the 
smallest unit of an element that can enter into combinations with atoms of the same or other elements. In 
many substances, atoms are combined into molecules. On earth, matter commonly exists in three states: 
solids, of fixed shape and volume; liquids, of variable shape but fixed volume; and gases, of variable 
shape and volume. Under high-temperature conditions, matter also can exist as a plasma. Most matter is a 
mixture: It is composed of two or more types of matter that can be present in varying amounts and can be 
separated by physical means. Heterogeneous mixtures vary in composition from point to point; homoge-
neous mixtures have the same composition from point to point. Pure substances consist of only one type 
of matter. A pure substance can be an element, which consists of only one type of atom and cannot be 
broken down by a chemical change, or a compound, which consists of two or more types of atoms. 

Try It 

1. How does a heterogeneous mixture differ from a homogeneous mixture? How are they similar? 
2. How does an element differ from a compound? How are they similar? 
3. How does an atom differ from a molecule? In what ways are they similar? 
4. Classify each of the following as an element, a compound, or a mixture: 
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a. iron 
b. copper 
c. oxygen 
d. water 
e. mercury oxide 
f. pancake syrup 

5. When elemental iron corrodes it combines with oxygen in the air to ultimately form red brown 
iron(III) oxide which we call rust. 

a. If a shiny iron nail with an initial mass of 23.2 g is weighed after being coated in a layer of 
rust, would you expect the mass to have increased, decreased, or remained the same? 
Explain. 

b. If the mass of the iron nail increases to 24.1 g, what mass of oxygen combined with the 
iron? 

Show Selected Solutions 

1. The mixture can have a variety of compositions; a pure substance has a definite composition. Both 
have the same composition from point to point. 

4. (a) element (c) element (e) compound 
5. (a) Increased, as it would have combined with oxygen in the air thus increasing the amount of mat-

ter and therefore the mass (b) 0.9 g 

See Chapter 1.2 Practice for additional problems related to Phases and Classification of Matter. 

Glossary 

atom: smallest particle of an element that can enter into a chemical combination 

compound: pure substance that can be decomposed into two or more elements 

element: substance that is composed of a single type of atom; a substance that cannot be decomposed 
by a chemical change 
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gas: state in which matter has neither definite volume nor shape 

heterogeneous mixture: combination of substances with a composition that varies from point to point 

homogeneous mixture: (also, solution) combination of substances with a composition that is uniform 
throughout 

liquid: state of matter that has a definite volume but indefinite shape 

law of conservation of matter: when matter converts from one type to another or changes form, there 
is no detectable change in the total amount of matter present 

mass: fundamental property indicating amount of matter 

matter: anything that occupies space and has mass 

mixture: matter that can be separated into its components by physical means 

molecule: bonded collection of two or more atoms of the same or different elements 

plasma: gaseous state of matter containing a large number of electrically charged atoms and/or mole-
cules 

pure substance: homogeneous substance that has a constant composition 

solid: state of matter that is rigid, has a definite shape, and has a fairly constant volume 

weight: force that gravity exerts on an object 
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Learning Outcomes 

• Identify properties of and changes in matter as physical or chemical 
• Identify properties of matter as extensive or intensive 

The characteristics that enable us to distinguish one substance from another are called properties. A 
physical property is a characteristic of matter that is not associated with a change in its chemical com-
position. Familiar examples of physical properties include density, color, hardness, melting and boiling 
points, and electrical conductivity. We can observe some physical properties, such as density and color, 
without changing the physical state of the matter observed. Other physical properties, such as the melt-
ing temperature of iron or the freezing temperature of water, can only be observed as matter undergoes a 
physical change. A physical change is a change in the state or properties of matter without any accom-
panying change in its chemical composition (the identities of the substances contained in the matter). 
We observe a physical change when wax melts, when sugar dissolves in coffee, and when steam con-
denses into liquid water (Figure 1.3.1). Other examples of physical changes include magnetizing and 
demagnetizing metals (as is done with common antitheft security tags) and grinding solids into powders 
(which can sometimes yield noticeable changes in color). In each of these examples, there is a change in 
the physical state, form, or properties of the substance, but no change in its chemical composition. 
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Figure 1.3.1 (a) Wax undergoes a physical change when solid wax is heated and forms liquid wax. (b) 
Steam condensing inside a cooking pot is a physical change, as water vapor is changed into liquid water. 
(credit a: modification of work by “95jb14”/Wikimedia Commons; credit b: modification of work by 
“mjneuby”/Flickr) 

The change of one type of matter into another type (or the inability to change) is a chemical property. 
Examples of chemical properties include flammability, toxicity, acidity, reactivity (many types), and 
heat of combustion. Iron, for example, combines with oxygen in the presence of water to form rust; 
chromium does not oxidize (Figure 1.3.2). Nitroglycerin is very dangerous because it explodes easily; 
neon poses almost no hazard because it is very unreactive. 

Figure 1.3.2 (a) One of the chemical properties of iron is that it rusts; (b) one of the chemical properties 
of chromium is that it does not. (credit a: modification of work by Tony Hisgett; credit b: modification of 
work by “Atoma”/Wikimedia Commons) 
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A chemical change always produces one or more types of matter that differ from the matter present 
before the change. The formation of rust is a chemical change because rust is a different kind of matter 
than the iron, oxygen, and water present before the rust formed. The explosion of nitroglycerin is a 
chemical change because the gases produced are very different kinds of matter from the original sub-
stance. Other examples of chemical changes include reactions that are performed in a lab (such as copper 
reacting with nitric acid), all forms of combustion (burning), and food being cooked, digested, or rotting 
(Figure 1.3.3). 

Figure 1.3.3 (a) Copper and nitric acid undergo a chemical change to form copper nitrate and brown, 
gaseous nitrogen dioxide. (b) During the combustion of a match, cellulose in the match and oxygen 
from the air undergo a chemical change to form carbon dioxide and water vapor. (c) Cooking red meat 
causes a number of chemical changes, including the oxidation of iron in myoglobin that results in the 
familiar red-to-brown color change. (d) A banana turning brown is a chemical change as new, darker 
(and less tasty) substances form. (credit b: modification of work by Jeff Turner; credit c: modification 
of work by Gloria Cabada-Leman; credit d: modification of work by Roberto Verzo) 
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Properties of matter fall into one of two categories. If the property depends on the amount of matter 
present, it is an extensive property. The mass and volume of a substance are examples of extensive 
properties; for instance, a gallon of milk has a larger mass and volume than a cup of milk. The value 
of an extensive property is directly proportional to the amount of matter in question. If the property of 
a sample of matter does not depend on the amount of matter present, it is an intensive property. Tem-
perature is an example of an intensive property. If the gallon and cup of milk are each at 20 °C (room 
temperature), when they are combined, the temperature remains at 20 °C. As another example, consider 
the distinct but related properties of heat and temperature. A drop of hot cooking oil spattered on your 
arm causes brief, minor discomfort, whereas a pot of hot oil yields severe burns. Both the drop and the 
pot of oil are at the same temperature (an intensive property), but the pot clearly contains much more 
heat (extensive property). 

While many elements differ dramatically in their chemical and physical properties, some elements have 
similar properties. We can identify sets of elements that exhibit common behaviors. For example, many 
elements conduct heat and electricity well, whereas others are poor conductors. These properties can be 
used to sort the elements into three classes: metals (elements that conduct well), nonmetals (elements 
that conduct poorly), and metalloids (elements that have properties of both metals and nonmetals). 

The periodic table is a table of elements that places elements with similar properties close together (Fig-
ure 1.3.4). You will learn more about the periodic table as you continue your study of chemistry. 
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Figure 1.3.4 The periodic table shows how elements may be grouped according to certain similar 
properties. Note the background color denotes whether an element is a metal, metalloid, or nonmetal, 
whereas the element symbol color indicates whether it is a solid, liquid, or gas. 

Key Concepts and Summary 

All substances have distinct physical and chemical properties, and may undergo physical or chemical 
changes. Physical properties, such as hardness and boiling point, and physical changes, such as melting or 
freezing, do not involve a change in the composition of matter. Chemical properties, such flammability 
and acidity, and chemical changes, such as rusting, involve production of matter that differs from that pre-
sent beforehand. 

Measurable properties fall into one of two categories. Extensive properties depend on the amount of mat-
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ter present, for example, the mass of gold. Intensive properties do not depend on the amount of matter 
present, for example, the density of gold. Heat is an example of an extensive property, and temperature is 
an example of an intensive property. 

Try It 

1. Classify each of the following changes as physical or chemical: 

a. condensation of steam 
b. burning of gasoline 
c. souring of milk 
d. dissolving sugar in water 
e. melting of gold 

2. The volume of a sample of oxygen gas changed from 10 mL to 11 mL as the temperature changed. 
Is this a chemical or physical change? 

3. Identify the following properties as either extensive or intensive. 

a. volume 
b. temperature 
c. humidity 
d. heat 
e. boiling point 

Show Solutions 

1. The answers are as follows: 

a. physical 
b. chemical 
c. chemical 
d. physical 
e. physical 

2. physical 
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See Chapter 1.3 Practice for additional problems related to Physical and Chemical Properties. 

Glossary 

chemical change: change producing a different kind of matter from the original kind of matter 

chemical property: behavior that is related to the change of one kind of matter into another kind of 
matter 

extensive property: property of a substance that depends on the amount of the substance 

intensive property: property of a substance that is independent of the amount of the substance 

physical change: change in the state or properties of matter that does not involve a change in its chemi-
cal composition 

physical property: characteristic of matter that is not associated with any change in its chemical com-
position 
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Learning Outcomes 

• Explain the process of measurement 
• Identify the three basic parts of a quantity 
• Describe the properties and base units of length, mass, volume, density, temperature, and time 
• Memorize base SI unit prefixes 
• Perform basic unit calculations and conversions in the metric and other unit systems 

Measurements provide the macroscopic information that is the basis of most of the hypotheses, theories, 
and laws that describe the behavior of matter and energy in both the macroscopic and microscopic 
domains of chemistry. Every measurement provides three kinds of information: the size or magnitude of 
the measurement (a number); a standard of comparison for the measurement (a unit); and an indication 
of the uncertainty of the measurement. While the number and unit are explicitly represented when a 
quantity is written, the uncertainty is an aspect of the measurement result that is more implicitly repre-
sented and will be discussed later. 

The number in the measurement can be represented in different ways, including decimal form and sci-
entific notation. (Scientific notation is also known as exponential notation; a review of this topic can be 
found in Essential Mathematics.) For example, the maximum takeoff weight of a Boeing 777-200ER 
airliner is 298,000 kilograms, which can also be written as 2.98 × 105 kg. The mass of the average mos-
quito is about 0.0000025 kilograms, which can be written as 2.5 × 10 6 kg. 

Units, such as liters, pounds, and centimeters, are standards of comparison for measurements. When we 
buy a 2-liter bottle of a soft drink, we expect that the volume of the drink was measured, so it is two 
times larger than the volume that everyone agrees to be 1 liter. The meat used to prepare a 0.25-pound 
hamburger is measured so it weighs one-fourth as much as 1 pound. Without units, a number can be 
meaningless, confusing, or possibly life threatening. Suppose a doctor prescribes phenobarbital to con-
trol a patient’s seizures and states a dosage of “100” without specifying units. Not only will this be con-
fusing to the medical professional giving the dose, but the consequences can be dire: 100 mg given three 
times per day can be effective as an anticonvulsant, but a single dose of 100 g is more than 10 times the 
lethal amount. 
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The measurement units for seven fundamental properties (“base units”) are listed in (Table 1.4.1). The 
standards for these units are fixed by international agreement, and they are called the International Sys-

tem of Units or SI Units (from the French, Le Système International d’Unités). SI units have been used 
by the United States National Institute of Standards and Technology (NIST) since 1964. Units for other 
properties may be derived from these seven base units. 

Table 1.4.1 Base Units of the SI System 

Property Measured Name of Unit Symbol of Unit 

length meter m 

mass kilogram kg 

time second s 

temperature kelvin K 

electric current ampere A 

amount of substance mole mol 

luminous intensity candela cd 

Everyday measurement units are often defined as fractions or multiples of other units. Milk is commonly 
packaged in containers of 1 gallon (4 quarts), 1 quart (0.25 gallon), and one pint (0.5 quart). This same 
approach is used with SI units, but these fractions or multiples are always powers of 10. Fractional or 
multiple SI units are named using a prefix and the name of the base unit. For example, a length of 1000 
meters is also called a kilometer because the prefix kilo means “one thousand,” which in scientific nota-
tion is 103 (1 kilometer = 1000 m = 103 m). The prefixes used and the powers to which 10 are raised are 
listed in Table 1.4.2. 
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Table 1.4.2 Common Unit Prefixes 

Prefix Symbol Factor Example 

femto f 10−15 
1 femtosecond (fs) = 1 × 10 15 s (0.000000000001 s) 

pico p 10−12 
1 picometer (pm) = 1 × 10 12 m (0.000000000001 m) 

nano n 10−9 
4 nanograms (ng) = 4 × 10 9 g (0.000000004 g) 

micro µ 10−6 
1 microliter (μL) = 1 × 10 6 L (0.000001 L) 

milli m 10−3 
2 millimoles (mmol) = 2 × 10 3 mol (0.002 mol) 

centi c 10−2 
7 centimeters (cm) = 7 × 10 2 m (0.07 m) 

deci d 10−1 
1 deciliter (dL) = 1 × 10 1 L (0.1 L ) 

Base — 100 Base unit 

deca da 101 1 decaliter (daL) = 1 × 101 L (10 L ) 

hecto h 102 1 hectoliter (hL)= 1 × 102 L (100L) 

kilo k 103 1 kilometer (km) = 1 × 103 m (1000 m) 

mega M 106 3 megahertz (MHz) = 3 × 106 Hz (3,000,000 Hz) 

giga G 109 8 gigayears (Gyr) = 8 × 109 yr (8,000,000,000 Gyr) 

tera T 1012 5 terawatts (TW) = 5 × 1012 W (5,000,000,000,000 W) 

SI Base Units 

The initial units of the metric system, which eventually evolved into the SI system, were established 
in France during the French Revolution. The original standards for the meter and the kilogram were 
adopted there in 1799 and eventually by other countries. This section introduces four of the SI base units 
commonly used in chemistry. Other SI units will be introduced later. 

Length 

The standard unit of length in both the SI and original metric systems is the meter (m). A meter was 
originally specified as 1/10,000,000 of the distance from the North Pole to the equator. It is now defined 
as the distance light in a vacuum travels in 1/299,792,458 of a second. A meter is about 3 inches longer 
than a yard (Figure 1.4.1); one meter is about 39.37 inches or 1.094 yards. Longer distances are often 
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reported in kilometers (1 km = 1000 m = 103 m), whereas shorter distances can be reported in centime-
ters (1 cm = 0.01 m = 10 2 m) or millimeters (1 mm = 0.001 m = 10 3 m). 

Figure 1.4.1 The relative lengths of 1 m, 1 yd, 1 cm, and 1 in. are shown (not actual size), as well as 
comparisons of 2.54 cm and 1 in., and of 1 m and 1.094 yd. 

Mass 
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Figure 1.4.2 This replica prototype kilogram as 
previously defined is housed at the National 
Institute of Standards and Technology (NIST) 
in Maryland. (credit: National Institutes of 
Standards and Technology) 

The standard unit of mass in the SI system is the kilo-

gram (kg). The kilogram was previously defined by 
the International Union of Pure and Applied Chemistry 
(IUPAC) as the mass of a specific reference object. 
This object was originally one liter of pure water, and 
more recently it was a metal cylinder made from a plat-
inum-iridium alloy with a height and diameter of 39 
mm (Figure 1.4.2). In May 2019, this definition was 
changed to one that is based instead on precisely mea-
sured values of several fundamental physical con-
stants. One kilogram is about 2.2 pounds. The gram (g) 
is exactly equal to 1/1000 of the mass of the kilogram 
(10 3 kg). 

Temperature 

Temperature is an intensive property. The SI unit of 
temperature is the kelvin (K). The IUPAC convention 
is to use kelvin (all lowercase) for the word, K (upper-
case) for the unit symbol, and neither the word 
“degree” nor the degree symbol (°). The degree Cel-

sius (°C) is also allowed in the SI system, with both 
the word “degree” and the degree symbol used for Cel-
sius measurements. Celsius degrees are the same magnitude as those of kelvin, but the two scales place 
their zeros in different places. Water freezes at 273.15 K (0 °C) and boils at 373.15 K (100 °C) by defi-
nition, and normal human body temperature is approximately 310 K (37 °C). The conversion between 
these two units and the Fahrenheit scale will be discussed later. 

Time 

The SI base unit of time is the second (s). Small and large time intervals can be expressed with the appro-
priate prefixes; for example, 3 microseconds = 0.000003 s = 3 × 10 6 and 5 megaseconds = 5,000,000 
s = 5 × 106 s. Alternatively, hours, days, and years can be used. 
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Derived SI Units 

We can derive many units from the seven SI base units. For example, we can use the base unit of length 
to define a unit of volume, and the base units of mass and length to define a unit of density. 

Volume 

Volume is the measure of the amount of space occupied by an object. The standard SI unit of volume 
is defined by the base unit of length (Figure 1.4.3). The standard volume is a cubic meter (m3), a cube 
with an edge length of exactly one meter. To dispense a cubic meter of water, we could build a cubic 
box with edge lengths of exactly one meter. This box would hold a cubic meter of water or any other 
substance. 

Figure A shows a large cube, which has a volume of 1 meter cubed. This larger cube is made 
up of many smaller cubes in a 10 by 10 pattern. Each of these smaller cubes has a volume of 1 
decimeter cubed, or one liter. Each of these smaller cubes is, in turn, made up of many tiny 
cubes. Each of these tiny cubes has a volume of 1 centimeter cubed, or one milliliter. A one 

cubic centimeter cube is about the same width as a dime, which has a width of 1.8 centimeter. 

Figure 1.4.3 (a) The relative volumes are shown for cubes of 1 m3, 1 dm3 (1 L), and 1 cm3 (1 mL) (not to 
scale). (b) The diameter of a dime is compared relative to the edge length of a 1-cm3 (1-mL) cube. 

A more commonly used unit of volume is derived from the decimeter (0.1 m, or 10 cm). A cube with 
edge lengths of exactly one decimeter contains a volume of one cubic decimeter (dm3). A liter (L) is the 
more common name for the cubic decimeter. One liter is about 1.06 quarts. 

A cubic centimeter (cm3) is the volume of a cube with an edge length of exactly one centimeter. The 
abbreviation cc (for cubic centimeter) is often used by health professionals. A cubic centimeter is also 
called a milliliter (mL) and is 1/1000 of a liter. 

Density 

We use the mass and volume of a substance to determine its density. Thus, the units of density are 
defined by the base units of mass and length. 

The density of a substance is the ratio of the mass of a sample of the substance to its volume. The SI 
unit for density is the kilogram per cubic meter (kg/m3). For many situations, however, this as an incon-
venient unit, and we often use grams per cubic centimeter (g/cm3) for the densities of solids and liquids, 
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and grams per liter (g/L) for gases. Although there are exceptions, most liquids and solids have densities 
that range from about 0.7 g/cm3 (the density of gasoline) to 19 g/cm3 (the density of gold). The density 
of air is about 1.2 g/L3. Table 1.4.3 shows the densities of some common substances. 

Table 1.4.3 Densities of Common Substances 

Solids Liquids Gases (at 25 °C and 1 atm) 

ice (at 0 °C) 0.92 g/cm3 water 1.0 g/cm3 dry air 1.20 g/L 

oak (wood) 0.60–0.90 g/cm3 ethanol 0.79 g/cm3 oxygen 1.31 g/L 

iron 7.9 g/cm3 acetone 0.79 g/cm3 nitrogen 1.14 g/L 

copper 9.0 g/cm3 glycerin 1.26 g/cm3 carbon dioxide 1.80 g/L 

lead 11.3 g/cm3 olive oil 0.92 g/cm3 helium 0.16 g/L 

silver 10.5 g/cm3 gasoline 0.70–0.77 g/cm3 neon 0.83 g/L 

gold 19.3 g/cm3 mercury 13.6 g/cm3 radon 9.1 g/L 

While there are many ways to determine the density of an object, perhaps the most straightforward 
method involves separately finding the mass and volume of the object, and then dividing the mass of the 
sample by its volume. In the following example, the mass is found directly by weighing, but the volume 
is found indirectly through length measurements. 

Example 1.4.1: Calculation of Density 

Gold—in bricks, bars, and coins—has been a form of currency for centuries. In order to swindle people 
into paying for a brick of gold without actually investing in a brick of gold, people have considered filling 
the centers of hollow gold bricks with lead to fool buyers into thinking that the entire brick is gold. It does 
not work: Lead is a dense substance, but its density is not as great as that of gold, 19.3 g/cm3. What is the 
density of lead if a cube of lead has an edge length of 2.00 cm and a mass of 90.7 g? 

Show Solution 
The density of a substance can be calculated by dividing its mass by its volume. The volume of a cube is 
calculated by cubing the edge length. 
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(We will discuss the reason for rounding to the first decimal place in the next section.) 

Check Your Learning 

An interactive H5P element has been excluded from this version of the text. You can view it online here: 

https://university.pressbooks.pub/chemistryucf/?p=33#h5p-2 

Key Concepts and Summary 

Measurements provide quantitative information that is critical in studying and practicing chemistry. Each 
measurement has an amount, a unit for comparison, and an uncertainty. Measurements can be represented 
in either decimal or scientific notation. Scientists primarily use the SI (International System) or metric 
systems. We use base SI units such as meters, seconds, and kilograms, as well as derived units, such as 
liters (for volume) and g/cm3 (for density). In many cases, we find it convenient to use unit prefixes that 

yield fractional and multiple units, such as microseconds (10 6 seconds) and megahertz (106 hertz), 
respectively. 

Key Equations 

• 
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Try It 

1. Indicate the SI base units or derived units that are appropriate for the following measurements: 

a. the mass of the moon 
b. the distance from Dallas to Oklahoma City 
c. the speed of sound 
d. the density of air 
e. the temperature at which alcohol boils 
f. the area of the state of Delaware 
g. the volume of a flu shot or a measles vaccination 

2. Give the name and symbol of the prefixes used with SI units to indicate multiplication by the fol-
lowing exact quantities. 

a. 103 

b. 10 2 

c. 0.1 

d. 10 3 

e. 1,000,000 
f. 0.000001 

3. A large piece of jewelry has a mass of 132.6 g. A graduated cylinder initially contains 48.6 mL 
water. When the jewelry is submerged in the graduated cylinder, the total volume increases to 61.2 
mL. 

a. Determine the density of this piece of jewelry. 
b. Assuming that the jewelry is made from only one substance, what substance is it likely to 

be? Explain. 

Show Solutions 

1. The answers are as follows: 

a. kilograms 
b. meters 
c. kilometers/second 
d. kilograms/cubic meter 
e. kelvin 
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f. square meters 
g. cubic meters 

See Chapter 1.4 Practice for additional problems related to Measurements. 

Glossary 

Celsius (°C): unit of temperature; water freezes at 0 °C and boils at 100 °C on this scale 

cubic centimeter (cm3 or cc): volume of a cube with an edge length of exactly 1 cm 

cubic meter (m3): >SI unit of volume 

density: ratio of mass to volume for a substance or object 

kelvin (K): SI unit of temperature; 273.15 K = 0 °C 

kilogram (kg): standard SI unit of mass; 1 kg = approximately 2.2 pounds 

length: measure of one dimension of an object 

liter (L): (also, cubic decimeter) unit of volume; 1 L = 1,000 cm3 

meter (m): standard metric and SI unit of length; 1 m = approximately 1.094 yards 

milliliter (mL): 1/1,000 of a liter; equal to 1 cm3 

second (s): SI unit of time 

SI units (International System of Units): standards fixed by international agreement in the Interna-
tional System of Units (Le Système International d’Unités) 

unit: standard of comparison for measurements 

volume: amount of space occupied by an object 
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Learning Outcomes 

• Define accuracy and precision 
• Differentiate between measured and exact numbers 
• Determine the number of significant figures in a number and perform the calculation to the correct 

number of significant figures. Employ metric prefixes. 
• Perform calculations using conversion factors to change from one unit to another (e.g. use density 

to convert between mass and volume). 
• Apply proper rounding rules to computed quantities 

Counting is the only type of measurement that is free from uncertainty, provided the number of objects 
being counted does not change while the counting process is underway. The result of such a counting 
measurement is an example of an exact number. If we count eggs in a carton, we know exactly how 
many eggs the carton contains. The numbers of defined quantities are also exact. By definition, 1 foot is 
exactly 12 inches, 1 inch is exactly 2.54 centimeters, and 1 gram is exactly 0.001 kilogram. Quantities 
derived from measurements other than counting, however, are uncertain to varying extents due to prac-
tical limitations of the measurement process used. 

Significant Figures in Measurement 

The numbers of measured quantities, unlike defined or directly counted quantities, are not exact. To 
measure the volume of liquid in a graduated cylinder, you should make a reading at the bottom of the 
meniscus, the lowest point on the curved surface of the liquid. 
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Figure 1.5.1 To measure the volume of liquid in this graduated cylinder, you must mentally subdivide the 
distance between the 21 and 22 mL marks into tenths of a milliliter, and then make a reading (estimate) 
at the bottom of the meniscus. 

Refer to the illustration in Figure 1.5.1. The bottom of the meniscus in this case clearly lies between the 
21 and 22 mL markings, meaning the liquid volume is certainly greater than 21 mL but less than 22 mL. 
The meniscus appears to be a bit closer to the 22 mL mark than to the 21 mL mark, and so a reason-
able estimate of the liquid’s volume would be 21.6 mL. In the number 21.6, then, the digits 2 and 1 are 
certain, but the 6 is an estimate. Some people might estimate the meniscus position to be equally distant 
from each of the markings and estimate the tenth-place digit as 5, while others may think it to be even 
closer to the 22 mL mark and estimate this digit to be 7. Note that it would be pointless to attempt to esti-
mate a digit for the hundredths place, given that the tenths-place digit is uncertain. In general, numerical 
scales such as the one on this graduated cylinder will permit measurements to one-tenth of the smallest 
scale division. The scale in this case has 1-mL divisions, and so volumes may be measured to the nearest 
0.1 mL. 

This concept holds true for all measurements, even if you do not actively make an estimate. If you place 
a quarter on a standard electronic balance, you may obtain a reading of 6.72 g. The digits 6 and 7 are 
certain, and the 2 indicates that the mass of the quarter is likely between 6.71 and 6.73 g. The quarter 
weighs about 6.72 g, with a nominal uncertainty in the measurement of ± 0.01 g. If we weigh the quar-
ter on a more sensitive balance, we may find that its mass is 6.723 g. This means its mass lies between 
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6.722 and 6.724 g, an uncertainty of 0.001 g. Every measurement has some uncertainty, which depends 
on the device used (and the user’s ability). All of the digits in a measurement, including the uncertain 
last digit, are called significant figures or significant digits. Note that zero may be a measured value; 
for example, if you stand on a scale that shows weight to the nearest pound and it shows “120,” then the 
1 (hundreds), 2 (tens) and 0 (ones) are all significant (measured) values. 

A measurement result is properly reported when its significant digits accurately represent the certainty 
of the measurement process. But what if you were analyzing a reported value and trying to determine 
what is significant and what is not? Well, for starters, all nonzero digits are significant, and it is only 
zeros that require some thought. We will use the terms “leading,” “trailing,” and “captive” for the zeros 
and will consider how to deal with them. 

Starting with the first nonzero digit on the left, count this digit and all remaining digits to the right. This 
is the number of significant figures in the measurement unless the last digit is a trailing zero lying to the 
left of the decimal point. 

Captive zeros result from measurement and are therefore always significant. Leading zeros, however, 
are never significant—they merely tell us where the decimal point is located. 
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The leading zeros in this example are not significant. We could use exponential notation (as described in 
Essential Mathematics) and express the number as 8.32407 × 10 3; then the number 8.32407 contains 
all of the significant figures, and 10  locates the decimal point. 

The number of significant figures is uncertain in a number that ends with a zero to the left of the decimal 
point location. The zeros in the measurement 1,300 grams could be significant or they could simply 
indicate where the decimal point is located. The ambiguity can be resolved with the use of exponential 
notation: 1.3 × 103 (two significant figures), 1.30 × 103 (three significant figures, if the tens place was 
measured), or 1.300 × 103 (four significant figures, if the ones place was also measured). In cases where 
only the decimal-formatted number is available, it is prudent to assume that all trailing zeros are not sig-
nificant. 

When determining significant figures, be sure to pay attention to reported values and think about the 
measurement and significant figures in terms of what is reasonable or likely when evaluating whether 
the value makes sense. For example, the official January 2014 census reported the resident population of 
the US as 317,297,725. Do you think the US population was correctly determined to the reported nine 
significant figures, that is, to the exact number of people? People are constantly being born, dying, or 
moving into or out of the country, and assumptions are made to account for the large number of peo-
ple who are not actually counted. Because of these uncertainties, it might be more reasonable to expect 
that we know the population to within perhaps a million or so, in which case the population should be 
reported as 3.17 × 108 people. 

Significant Figures in Calculations 

A second important principle of uncertainty is that results calculated from a measurement are at least as 
uncertain as the measurement itself. We must take the uncertainty in our measurements into account to 
avoid misrepresenting the uncertainty in calculated results. One way to do this is to report the result of 
a calculation with the correct number of significant figures, which is determined by the following three 
rules for rounding numbers: 

1. When we add or subtract numbers, we should round the result to the same number of decimal 
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places as the number with the least number of decimal places (the least precise value in terms of 
addition and subtraction). 

2. When we multiply or divide numbers, we should round the result to the same number of digits as 
the number with the least number of significant figures (the least precise value in terms of multi-
plication and division). 

3. If the digit to be dropped (the one immediately to the right of the digit to be retained) is less than 
5, we “round down” and leave the retained digit unchanged; if it is more than 5, we “round up” 
and increase the retained digit by 1; if the dropped digit is 5 followed only by zeros or nothing, we 
round up or down, whichever yields an even value for the retained digit. If any nonzero digits fol-
low the dropped 5, round up. (The part of this rule about the 5 may strike you as a bit odd, but it’s 
based on reliable statistics and is aimed at avoiding any bias when dropping the digit “5,” since it 
is equally close to both possible values of the retained digit.) 

The following examples illustrate the application of this rule in rounding a few different numbers to 
three significant figures: 

• 0.028675 rounds “up” to 0.0287 (the dropped digit, 7, is greater than 5) 
• 18.3384 rounds “down” to 18.3 (the dropped digit, 3, is lesser than 5) 
• 6.8752 rounds “up” to 6.88 (the dropped digit is 5, and a nonzero digit follows it) 
• 92.85 rounds “down” to 92.8 (the dropped digit is 5, and the retained digit is even) 

Let’s work through these rules with a few examples. 

Example 1.5.1: Rounding Numbers 

Round the following to the indicated number of significant figures: 

1. 31.57 (to two significant figures) 
2. 8.1649 (to three significant figures) 
3. 0.051065 (to four significant figures) 
4. 0.90275 (to four significant figures) 

Show Solutions 

1. 31.57 rounds “up” to 32 (the dropped digit is 5, and a nonzero digit follows it) 
2. 8.1649 rounds “down” to 8.16 (the dropped digit, 4, is lesser than 5) 
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3. 0.051065 rounds “down” to 0.05106 (the dropped digit is 5, and the retained digit is even) 
4. 0.90275 rounds “up” to 0.9028 (the dropped digit is 5, and the retained digit is even) 

Check Your Learning 

An interactive H5P element has been excluded from this version of the text. You can view it online here: 

https://university.pressbooks.pub/chemistryucf/?p=35#h5p-3 

Example 1.5.2: Addition and Subtraction with Significant Figures 

Rule: When we add or subtract numbers, we should round the result to the same number of decimal places 
as the number with the least number of decimal places (i.e., the least precise value in terms of addition 
and subtraction). 

1. Add 1.0023 g and 4.383 g. 
2. Subtract 421.23 g from 486 g. 

Show Solutions 

1. 1.0023 + 4.383 = 5.3853 
Answer is 5.385 g (round to the thousandths place; three decimal places) 

2. 486  421.23 = 64.77 
Answer is 65 g (round to the ones place; no decimal places) 
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Check Your Learning 

An interactive H5P element has been excluded from this version of the text. You can view it online here: 

https://university.pressbooks.pub/chemistryucf/?p=35#h5p-4 

Example 1.5.3: Multiplication and Division with Significant Figures 

Rule: When we multiply or divide numbers, we should round the result to the same number of digits as 
the number with the least number of significant figures (the least precise value in terms of multiplication 
and division). 

1. Multiply 0.6238 cm by 6.6 cm. 
2. Divide 421.23 g by 486 mL. 

Show Solutions 

1. 

2. 

Check Your Learning 

An interactive H5P element has been excluded from this version of the text. You can view it online here: 

https://university.pressbooks.pub/chemistryucf/?p=35#h5p-5 

In the midst of all these technicalities, it is important to keep in mind the reason why we use significant 
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figures and rounding rules—to correctly represent the certainty of the values we report and to ensure 
that a calculated result is not represented as being more certain than the least certain value used in the 
calculation. 

Example 1.5.4: Calculation with Significant Figures 

One common bathtub is 13.44 dm long, 5.920 dm wide, and 2.54 dm deep. Assume that the tub is rectan-
gular and calculate its approximate volume in liters. 

Show Solution 

Check Your Learning 

An interactive H5P element has been excluded from this version of the text. You can view it online here: 

https://university.pressbooks.pub/chemistryucf/?p=35#h5p-6 

Example 1.5.5: Experimental Determination of Density Using Water Displacement 

A piece of rebar is weighed and then submerged in a graduated cylinder partially filled with water, with 
results as shown. 
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Figure 1.5.2 This diagram shows the initial volume of water in a graduated cylinder as 13.5 
milliliters. A 69.658 gram piece of metal rebar is added to the graduated cylinder, causing the 
water to reach a final volume of 22.4 milliliters 

1. Use these values to determine the density of this piece of rebar. 
2. Rebar is mostly iron. Does your result in number 1 support this statement? How? 

Show Solutions 
The volume of the piece of rebar is equal to the volume of the water displaced: 

(rounded to the nearest 0.1 mL, per the rule for addition and subtraction) 

The density is the mass-to-volume ratio: 

(rounded to two significant figures, per the rule for multiplication and division) 
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The density of iron is 7.9 g/cm3, very close to that of rebar, which lends some support to the fact that 
rebar is mostly iron. 

Check Your Learning 

An irregularly shaped piece of a shiny yellowish material is weighed and then submerged in a graduated 
cylinder, with results as shown. 

Figure 1.5.3 This diagram shows the initial volume of water in a graduated cylinder as 17.1 
milliliters. A 51.842 gram gold colored rock is added to the graduated cylinder, causing the 
water to reach a final volume of 19.8 milliliters 

An interactive H5P element has been excluded from this version of the text. You can view it online here: 

https://university.pressbooks.pub/chemistryucf/?p=35#h5p-7 
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Accuracy and Precision 

Scientists typically make repeated measurements of a quantity to ensure the quality of their findings and 
to know both the precision and the accuracy of their results. Measurements are said to be precise if they 
yield very similar results when repeated in the same manner. A measurement is considered accurate if 
it yields a result that is very close to the true or accepted value. Precise values agree with each other; 
accurate values agree with a true value. These characterizations can be extended to other contexts, such 
as the results of an archery competition (Figure 1.5.4). 

Figure 1.5.4 (a) These arrows are close to both the bull’s eye and one another, so they are both accurate 
and precise. (b) These arrows are close to one another but not on target, so they are precise but not 
accurate. (c) These arrows are neither on target nor close to one another, so they are neither accurate nor 
precise. 

Suppose a quality control chemist at a pharmaceutical company is tasked with checking the accuracy 
and precision of three different machines that are meant to dispense 10 ounces (296 mL) of cough syrup 
into storage bottles. She proceeds to use each machine to fill five bottles and then carefully determines 
the actual volume dispensed, obtaining the results tabulated in Table 1.5.1. 

Table 1.5.1 Volume (mL) of Cough Medicine Delivered by 10-oz (296 mL) Dispensers 

Dispenser #1 Dispenser #2 Dispenser #3 

283.3 298.3 296.1 

284.1 294.2 295.9 

283.9 296.0 296.1 

284.0 297.8 296.0 

284.1 293.9 296.1 
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Considering these results, she will report that dispenser #1 is precise (values all close to one another, 
within a few tenths of a milliliter) but not accurate (none of the values are close to the target value of 
296 mL, each being more than 10 mL too low). Results for dispenser #2 represent improved accuracy 
(each volume is less than 3 mL away from 296 mL) but worse precision (volumes vary by more than 4 
mL). Finally, she can report that dispenser #3 is working well, dispensing cough syrup both accurately 
(all volumes within 0.1 mL of the target volume) and precisely (volumes differing from each other by 
no more than 0.2 mL). 

Key Concepts and Summary 

Quantities can be exact or measured. Measured quantities have an associated uncertainty that is repre-
sented by the number of significant figures in the measurement. The uncertainty of a calculated value 
depends on the uncertainties in the values used in the calculation and is reflected in how the value is 
rounded. Measured values can be accurate (close to the true value) and/or precise (showing little varia-
tion when measured repeatedly). 

Try It 

1. Express each of the following numbers in exponential notation with correct significant figures: 

a. 704 
b. 0.03344 
c. 547.9 

2. Indicate whether each of the following can be determined exactly or must be measured with some 
degree of uncertainty: 

a. the number of seconds in an hour 
b. the number of pages in this book 
c. the number of grams in your weight 

3. How many significant figures are contained in each of the following measurements? 

a. 38.7 
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b. 2 × 1018 m × 2 × 1018 m 
c. 3,486,002 kg 

4. Round off each of the following numbers to two significant figures: 

a. 0.436 
b. 9.000 
c. 27.2 

5. Round off each of the following numbers to two significant figures: 

a. 517 
b. 86.3 
c. 6.382 × 103 

Show Solutions 

1. (a) 7.04 × 102; (b) 3.344 × 10–2; (c) 5.479 × 102 
2. 
3. (a) three; (b) one; (c) seven 
4. (a) 0.44; (b) 9.0; (c) 27 
5. 

See Chapter 1.5 Practice for additional problems related to Measurement Uncertainty, Accuracy, and 
Precision. 

Glossary 

accuracy: how closely a measurement aligns with a correct value 

exact number: number derived by counting or by definition 

precision: how closely a measurement matches the same measurement when repeated 
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rounding: procedure used to ensure that calculated results properly reflect the uncertainty in the mea-
surements used in the calculation 

significant figures: (also, significant digits) all of the measured digits in a determination, including the 
uncertain last digit 

uncertainty: estimate of amount by which measurement differs from true value 
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Learning Outcomes 

• Explain the dimensional analysis (factor label) approach to mathematical calculations involving 
quantities 

• Use dimensional analysis to carry out unit conversions for a given property and computations 
involving two or more properties 

It is often the case that a quantity of interest may not be easy (or even possible) to measure directly 
but instead must be calculated from other directly measured properties and appropriate mathematical 
relationships. For example, consider measuring the average speed of an athlete running sprints. This is 
typically accomplished by measuring the time required for the athlete to run from the starting line to the 
finish line, and the distance between these two lines, and then computing speed from the equation that 
relates these three properties: 

An Olympic-quality sprinter can run 100 m in approximately 10 s, corresponding to an average speed of 

. 

Note that this simple arithmetic involves dividing the numbers of each measured quantity to yield the 
number of the computed quantity (100/10 = 10) and likewise dividing the units of each measured quan-
tity to yield the unit of the computed quantity (m/s = m/s). Now, consider using this same relation to 
predict the time required for a person running at this speed to travel a distance of 25 m. The same rela-
tion between the three properties is used, but in this case, the two quantities provided are a speed (10 m/
s) and a distance (25 m). To yield the sought property, time, the equation must be rearranged appropri-
ately: 
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The time can then be computed as . 

Again, arithmetic on the numbers (25  10 = 2.5) was accompanied by the same arithmetic on the units 
(m/m/s = s) to yield the number and unit of the result, 2.5 s. Note that, just as for numbers, when a unit 
is divided by an identical unit (in this case, m/m), the result is “1”—or, as commonly phrased, the units 
“cancel.” 

These calculations are examples of a versatile mathematical approach known as dimensional analysis

(or the factor-label method). Dimensional analysis is based on this premise: the units of quantities must 
be subjected to the same mathematical operations as their associated numbers. This method can be 
applied to computations ranging from simple unit conversions to more complex, multi-step calculations 
involving several different quantities. 

Conversion Factors and Dimensional Analysis 

A ratio of two equivalent quantities expressed with different measurement units can be used as a unit 

conversion factor. For example, the lengths of 2.54 cm and 1 in. are equivalent (by definition), and so 
a unit conversion factor may be derived from the ratio, 

Several other commonly used conversion factors are given in Table 1.6.1. 

Table 1.6.1 Common Conversion Factors 

Length Volume Mass 

1 m = 1.0936 yd 1 L = 1.0567 qt 1 kg = 2.2046 lb 

1 in. = 2.54 cm (exact) 1 qt = 0.94635 L 1 lb = 453.59 g 

1 km = 0.62137 mi 1 ft3 = 28.317 L 1 (avoirdupois) oz = 28.349 g 

1 mi = 1609.3 m 1 tbsp = 14.787 mL 1 (troy) oz = 31.103 g 

When a quantity (such as distance in inches) is multiplied by an appropriate unit conversion factor, the 
quantity is converted to an equivalent value with different units (such as distance in centimeters). For 
example, a basketball player’s vertical jump of 34 inches can be converted to centimeters by: 
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Since this simple arithmetic involves quantities, the premise of dimensional analysis requires that we 
multiply both numbers and units. The numbers of these two quantities are multiplied to yield the number 

of the product quantity, 86, whereas the units are multiplied to yield  . Just as for numbers, a 

ratio of identical units is also numerically equal to one,  and the unit product thus simplifies to 

cm. (When identical units divide to yield a factor of 1, they are said to “cancel.”) Dimensional analysis 
may be used to confirm the proper application of unit conversion factors as demonstrated in the follow-
ing example. 

Example 1.6.1: Using a Unit Conversion Factor 

The mass of a competition frisbee is 125 g. Convert its mass to ounces using the unit conversion factor 
derived from the relationship 1 oz = 28.349 g (Table 1.6.1). 

Show Solution 
If we have the conversion factor, we can determine the mass in kilograms using an equation similar the 
one used for converting length from inches to centimeters. 

We write the unit conversion factor in its two forms: 

The correct unit conversion factor is the ratio that cancels the units of grams and leaves ounces. 
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Check Your Learning 

An interactive H5P element has been excluded from this version of the text. You can view it online here: 

https://university.pressbooks.pub/chemistryucf/?p=37#h5p-8 

Beyond simple unit conversions, the factor-label method can be used to solve more complex problems 
involving computations. Regardless of the details, the basic approach is the same—all the factors 
involved in the calculation must be appropriately oriented to insure that their labels (units) will appro-
priately cancel and/or combine to yield the desired unit in the result. This is why it is referred to as the 
factor-label method. As your study of chemistry continues, you will encounter many opportunities to 
apply this approach. 

Example 1.6.2: Computing Quantities from Measurement Results and Known 
Mathematical Relations 

What is the density of common antifreeze in units of g/mL? A 4.00 qt sample of the antifreeze weighs 
9.26 lb. 

Show Solution 

Since  , we need to divide the mass in grams by the volume in milliliters. In gen-

eral: the number of units of . 
The necessary conversion factors are given in Table 1.6: 1 lb = 453.59 g; 1 L = 1.0567 qt; 1 L = 1,000 
mL. We can convert mass from pounds to grams in one step: 

We need to use two steps to convert volume from quarts to milliliters. 

1. Convert quarts to liters: 
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2. Convert liters to milliliters: 

Then, . 

Alternatively, the calculation could be set up in a way that uses three unit conversion factors sequentially 
as follows: 

Check Your Learning 

An interactive H5P element has been excluded from this version of the text. You can view it online here: 

https://university.pressbooks.pub/chemistryucf/?p=37#h5p-9 

Example 1.6.3: Computing Quantities from Measurement Results and Known 
Mathematical Relations 

While being driven from Philadelphia to Atlanta, a distance of about 1250 km, a 2014 Lamborghini Aven-
tador Roadster uses 213 L gasoline. 

1. What (average) fuel economy, in miles per gallon, did the Roadster get during this trip? 
2. If gasoline costs $3.80 per gallon, what was the fuel cost for this trip? 

Show Solution 

Part 1 

We first convert distance from kilometers to miles: 
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Then we convert volume from liters to gallons: 

Then, 

Alternatively, the calculation could be set up in a way that uses all the conversion factors sequentially, as 
follows: 

Part 2 

Using the previously calculated volume in gallons, we find: 

Check Your Learning 

An interactive H5P element has been excluded from this version of the text. You can view it online here: 

https://university.pressbooks.pub/chemistryucf/?p=37#h5p-10 

Conversion of Temperature Units 

We use the word temperature to refer to the hotness or coldness of a substance. One way we measure 
a change in temperature is to use the fact that most substances expand when their temperature increases 
and contract when their temperature decreases. The mercury or alcohol in a common glass thermometer 
changes its volume as the temperature changes, and the position of the trapped liquid along a printed 
scale may be used as a measure of temperature. 

Temperature scales are defined relative to selected reference temperatures: Two of the most commonly 
used are the freezing and boiling temperatures of water at a specified atmospheric pressure. On the Cel-
sius scale, 0 °C is defined as the freezing temperature of water and 100 °C as the boiling temperature 
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of water. The space between the two temperatures is divided into 100 equal intervals, which we call 
degrees. On the Fahrenheit scale, the freezing point of water is defined as 32 °F and the boiling tem-
perature as 212 °F. The space between these two points on a Fahrenheit thermometer is divided into 180 
equal parts (degrees). 

Defining the Celsius and Fahrenheit temperature scales as described in the previous paragraph results in 
a slightly more complex relationship between temperature values on these two scales than for different 
units of measure for other properties. Most measurement units for a given property are directly propor-
tional to one another (y = mx). Using familiar length units as one example: 

where  = length in feet,  = length in inches, and the proportionality constant, , is the conversion 
factor. The Celsius and Fahrenheit temperature scales, however, do not share a common zero point, and 
so the relationship between these two scales is a linear one rather than a proportional one (
). Consequently, converting a temperature from one of these scales into the other requires more than 
simple multiplication by a conversion factor, , it also must take into account differences in the scales’ 
zero points ( ). 

The linear equation relating Celsius and Fahrenheit temperatures is easily derived from the two temper-
atures used to define each scale. Representing the Celsius temperature as  and the Fahrenheit tempera-
ture as , the slope, , is computed to be: 

The y-intercept of the equation, , is then calculated using either of the equivalent temperature pairs, 
(100 °C, 212 °F) or (0 °C, 32 °F), as: 

The equation relating the temperature scales is then: 

An abbreviated form of this equation that omits the measurement units is: 
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We can graph that equation to visualize the relationship between Fahrenheit and Celsius: 

Figure 1.6.1. This graph shows the linear relationship between 
Fahrenheit and Celsius. 

Rearrangement of this equation yields the form most useful for converting from Fahrenheit to Celsius: 

As mentioned earlier, the SI unit of temperature is the kelvin (K). Unlike the Celsius and Fahrenheit 
scales, the kelvin scale is an absolute temperature scale in which 0 (zero) K corresponds to the lowest 
temperature that can theoretically be achieved. The early 19th-century discovery of the relationship 
between a gas’s volume and temperature suggested that the volume of a gas would be zero at −273.15 
°C. In 1848, British physicist William Thompson, who later adopted the title of Lord Kelvin, proposed 
an absolute temperature scale based on this concept (further treatment of this topic is provided in the 
module on gases). 

The freezing temperature of water on this scale is 273.15 K and its boiling temperature 373.15 K. Notice 
the numerical difference in these two reference temperatures is 100, the same as for the Celsius scale, 

and so the linear relation between these two temperature scales will exhibit a slope of  . Following 

1.6 MATHEMATICAL TREATMENT OF MEASUREMENT RESULTS  |  70

https://university.pressbooks.pub/chemistryucf/format/chapter/introduction-to-gases/


the same approach, the equations for converting between the kelvin and Celsius temperature scales are 
derived to be: 

The 273.15 in these equations has been determined experimentally, so it is not exact. Figure 1.6.2 shows 
the relationship among the three temperature scales. Recall that we do not use the degree sign with tem-
peratures on the kelvin scale. 

Figure 1.6.2 The Fahrenheit, Celsius, and kelvin temperature scales are compared. 

Although the kelvin (absolute) temperature scale is the official SI temperature scale, Celsius is com-
monly used in many scientific contexts and is the scale of choice for nonscience contexts in almost all 
areas of the world. Very few countries (the U.S. and its territories, the Bahamas, Belize, Cayman Islands, 
and Palau) still use Fahrenheit for weather, medicine, and cooking. 
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Example 1.6.4: Conversion from Celsius 

Normal body temperature has been commonly accepted as 37.0 °C (although it varies depending on time 
of day and method of measurement, as well as among individuals). What is this temperature on the kelvin 
scale and on the Fahrenheit scale? 

Show Solution 

Check Your Learning 

An interactive H5P element has been excluded from this version of the text. You can view it online here: 

https://university.pressbooks.pub/chemistryucf/?p=37#h5p-11 

Example 1.6.5: Conversion from Fahrenheit 

Baking a ready-made pizza calls for an oven temperature of 450 °F. If you are in Europe, and your oven 
thermometer uses the Celsius scale, what is the setting? What is the kelvin temperature? 

Show Solution 

Check Your Learning 
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An interactive H5P element has been excluded from this version of the text. You can view it online here: 

https://university.pressbooks.pub/chemistryucf/?p=37#h5p-12 

Key Concepts and Summary 

Measurements are made using a variety of units. It is often useful or necessary to convert a measured 
quantity from one unit into another. These conversions are accomplished using unit conversion factors, 
which are derived by simple applications of a mathematical approach called the factor-label method or 
dimensional analysis. This strategy is also employed to calculate sought quantities using measured quanti-
ties and appropriate mathematical relations. 

Key Equations 

• 

• 

• 

• 

Try It 

1. Calculate these volumes. 

a. What is the volume of 11.3 g graphite,  density = 2.25 g/cm3? 
b. What is the volume of 39.657 g bromine, density = 2.928 g/cm3? 

2. Convert the boiling temperature of gold, 2966 °C, into degrees Fahrenheit and kelvin. 
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3. Use scientific (exponential) notation to express the following quantities in terms of the SI base 
units in Table 1.6.1: 

a. 0.13 g 
b. 232 Gg 
c. 5.23 pm 

4. Complete the following conversions between SI units. 

a. 612 g = ________ mg 
b. 8.160 m = ________ cm 
c. 3779 μg = ________ g 

Show Selected Solutions 
1. 

2. 5371 °F, 3239 K 

3. a. 1.3 × 10 4 kg 
b. 2.32 × 108 kg 

c. 5.23 × 10 12 m 

d. 8.63 × 10 5 kg 

e. 3.76 × 10 1 m 

f. 5.4 × 10 5 m 
g. 1 × 1012 s 

h. 2.7 × 10 11 s 

i. 1.5 × 10 4 K 
4. 

See Chapter 1.6 Practice for additional problems related to Mathematical Treatment of Measurement 
Results. 
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Glossary 

dimensional analysis: (also, factor-label method) versatile mathematical approach that can be applied 
to computations ranging from simple unit conversions to more complex, multi-step calculations involv-
ing several different quantities 

Fahrenheit: unit of temperature; water freezes at 32 °F and boils at 212 °F on this scale 

unit conversion factor: ratio of equivalent quantities expressed with different units; used to convert 
from one unit to a different unit 

Licenses and Attributions (Click to expand) 
CC licensed content, Shared previously 

• Chemistry 2e. Provided by: OpenStax. Located at: https://openstax.org/. License: CC BY: 
Attribution. License Terms: Access for free at 
https://openstax.org/books/chemistry-2e/pages/1-introduction 

All rights reserved content 

• Atom Bombs and Dimensional Analysis – Sixty Symbols. Authored by: Sixty Symbols. 
Located at: https://youtu.be/_gaCAFcW6OY. License: Other. License Terms: Standard 
YouTube License 

75  |  1.6 MATHEMATICAL TREATMENT OF MEASUREMENT RESULTS

https://openstax.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://youtu.be/_gaCAFcW6OY


An interactive H5P element has been excluded from this version of the text. You can view it online here: 

https://university.pressbooks.pub/chemistryucf/?p=39#h5p-1 

1.1 Chemistry in Context: The Scientific Method [Go to section 1.1] 

1. Explain how you could experimentally determine whether the outside temperature is higher or 
lower than 0 °C (32 °F) without using a thermometer. 

2. Identify each of the following statements as being most similar to a hypothesis, a law, or a theory. 
Explain your reasoning. 

a. Falling barometric pressure precedes the onset of bad weather. 
b. All life on earth has evolved from a common, primitive organism through the process of nat-

ural selection. 
c. My truck’s gas mileage has dropped significantly, probably because it’s due for a tune-up. 

3. The amount of heat required to melt 2 lbs of ice is twice the amount of heat required to melt 1 lb of 
ice. Is this observation a macroscopic or microscopic description of chemical behavior? Explain 
your answer. 

4. According to one theory, the pressure of a gas increases as its volume decreases, because the mole-
cules in the gas have to move a shorter distance to hit the walls of the container. Does this theory 
follow a macroscopic or microscopic description of chemical behavior? Explain your answer. 

Show Selected Solutions 

1. Place a glass of water outside. It will freeze if the temperature is below 0 °C. 
3. Macroscopic. The heat required is determined from macroscopic properties. 
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1.2 Phases and Classification of Matter [Go to section 1.2] 

5. What properties distinguish solids from liquids? Liquids from gases? Solids from gases? 
6. Why do we use an object’s mass, rather than its weight, to indicate the amount of matter it con-

tains? 
7. Many of the items you purchase are mixtures of pure compounds. Select three of these commercial 

products and prepare a list of the ingredients that are pure compounds.  
8. How does a heterogeneous mixture differ from a homogeneous mixture? How are they similar? 
9. How are the molecules in oxygen gas, the molecules in hydrogen gas, and water molecules similar? 

How do they differ? 
10. A sulfur atom and a sulfur molecule are not identical. What is the difference? 
11. As we drive an automobile, we don’t think about the chemicals consumed and produced. Prepare a 

list of the principal chemicals consumed and produced during the operation of an automobile. 
12. Classify each of the following as an element, a compound, or a mixture: 

a. nitrogen 
b. sulfur 
c. carbon dioxide 
d. air 
e. a substance composed of molecules each of which contains one hydrogen atom and one 

chlorine atom 
f. a substance composed of molecules each of which contains two iodine atoms 
g. baking soda 
h. sucrose 
i. baking powder 
j. gasoline 

13. Yeast converts glucose to ethanol and carbon dioxide during anaerobic fermentation as depicted in 
the simple chemical equation below: 

a. If 200.0 g of glucose is fully converted, what will be the total mass of ethanol and carbon 
dioxide produced? 

b. If the fermentation is carried out in an open container, would you expect the mass of the 
container and contents after fermentation to be less than, greater than, or the same as the 
mass of the container and contents before fermentation? Explain. 
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c. If 97.7 g of carbon dioxide is produced, what mass of ethanol is produced? 

14. Matter is everywhere around us. Make a list by name of fifteen different kinds of matter that you 
encounter every day. Your list should include (and label at least one example of each) the follow-
ing: a solid, a liquid, a gas, an element, a compound, a homogenous mixture, a heterogeneous mix-
ture, and a pure substance. 

15. We refer to astronauts in space as weightless, but not without mass. Why? 
16. As stated in the text, convincing examples that demonstrate the law of conservation of matter out-

side of the laboratory are few and far between. Indicate whether the mass would increase, decrease, 
or stay the same for the following scenarios where chemical reactions take place: 

a. Exactly one pound of bread dough is placed in a baking tin. The dough is cooked in an oven 
at 350 °F releasing a wonderful aroma of freshly baked bread during the cooking process. Is 
the mass of the baked loaf less than, greater than, or the same as the one pound of original 
dough? Explain. 

b. When magnesium burns in air a white flaky ash of magnesium oxide is produced. Is the 
mass of magnesium oxide less than, greater than, or the same as the original piece of magne-
sium? Explain. 

c. Antoine Lavoisier, the French scientist credited with first stating the law of conservation of 
matter, heated a mixture of tin and air in a sealed flask to produce tin oxide. Did the mass of 
the sealed flask and contents decrease, increase, or remain the same after the heating? 

Show Selected Solutions 

5. Liquids can change their shape (flow); solids can’t. Gases can undergo large volume changes as 
pressure changes; liquids do not. Gases flow and change volume; solids do not. 

7. Answers will vary. Sample answer: Gatorade contains water, sugar, dextrose, citric acid, salt, 
sodium chloride, monopotassium phosphate, and sucrose acetate isobutyrate. 

9. In each case, a molecule consists of two or more combined atoms. They differ in that the types of 
atoms change from one substance to the next. 

11. Gasoline (a mixture of compounds), oxygen, and to a lesser extent, nitrogen are consumed. Carbon 
dioxide and water are the principal products. Carbon monoxide and nitrogen oxides are produced 
in lesser amounts. 

13. The answers are as follows: 

a. 200.0 g 
b. The mass of the container and contents would decrease as carbon dioxide is a gaseous prod-

uct and would leave the container. 
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c. 102.3 g 

15. Mass is a measurement of the amount of matter in an object. Weight is the force exerted on the 
object by gravity. The astronaut’s mass does not change, even when they are not experiencing the 
force of gravity. 

1.3 Physical and Chemical Properties [Go to section 1.3] 

17. Explain the difference between extensive properties and intensive properties. 
18. Classify the six underlined properties in the following paragraph as chemical or physical: 

Fluorine is a pale yellow gas that reacts with most substances. The free element melts at 
–220 °C and boils at –188 °C. Finely divided metals burn in fluorine with a bright flame. 
Nineteen grams of fluorine will react with 1.0 gram of hydrogen. 

19. The density (d) of a substance is an intensive property that is defined as the ratio of its mass (m) to 
its volume (V). 

 

Considering that mass and volume are both extensive properties, explain why their ratio, density, is 
intensive. 

20. Classify each of the following changes as physical or chemical: 

a. coal burning 
b. ice melting 
c. mixing chocolate syrup with milk 
d. explosion of a firecracker 
e. magnetizing of a screwdriver 

21. A 2.0-liter volume of hydrogen gas combined with 1.0 liter of oxygen gas to produce 2.0 liters of 
water vapor. Does oxygen undergo a chemical or physical change? 
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Show Selected Solutions 

17. The value of an extensive property depends upon the amount of matter being considered, whereas 
the value of an intensive property is the same regardless of the amount of matter being considered. 

19. Being extensive properties, both mass and volume are directly proportional to the amount of sub-
stance under study. Dividing one extensive property by another will in effect “cancel” this depen-
dence on amount, yielding a ratio that is independent of amount (an intensive property). 

21. Chemical 

1.4 Measurements [Go to section 1.4] 

22. Is one liter about an ounce, a pint, a quart, or a gallon? 
23. Is a meter about an inch, a foot, a yard, or a mile? 
24. Give the name and symbol of the prefixes used with SI units to indicate multiplication by the fol-

lowing exact quantities. 

a. 

b. 

c. 0.1 
d. 

e. 1,000,000 
f. 0.000001 

25. Indicate the SI base units or derived units that are appropriate for the following measurements: 

a. the length of a marathon race (26 miles 385 yards) 
b. the mass of an automobile 
c. the volume of a swimming pool 
d. the speed of an airplane 
e. the density of gold 
f. the area of a football field 
g. the maximum temperature at the South Pole on April 1, 1913 
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Show Selected Solutions 

23. Yard 
25. The answers are as follows: 

a. Meter (m) 
b. Kilogram (kg) 
c. Cubic meter ( ) 
d. Kilometers/second (km/s) 
e. Kilograms per cubic meter (kg/ ) 
f. Square meters ( ) 
g. Kelvin (K) 

1.5 Measurement Uncertainty, Accuracy, and Precision [Go to section 1.5] 

26. Indicate whether each of the following can be determined exactly or must be measured with some 
degree of uncertainty: 

a. the number of eggs in a basket 
b. the mass of a dozen eggs 
c. the number of gallons of gasoline necessary to fill an automobile gas tank 
d. the number of cm in 2 m 
e. the mass of a textbook 
f. the time required to drive from San Francisco to Kansas City at an average speed of 53 mi/h 

27. How many significant figures are contained in each of the following measurements? 

a. 53 cm 
b. 2.05 ×  m 

c. 86,002 J 
d. 9.740 ×  m/s 

e. 10.0613 
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f. 0.17 g/mL 
g. 0.88400 s 

28. The following quantities were reported on the labels of commercial products. Determine the num-
ber of significant figures in each. 

a. 0.0055 g active ingredients 
b. 12 tablets 
c. 3% hydrogen peroxide 
d. 5.5 ounces 
e. 473 mL 
f. 1.75% bismuth 
g. 0.001% phosphoric acid 
h. 99.80% inert ingredients 

Show Selected Solutions 

27. The answers are as follows: 

a. 2 
b. 3 
c. 5 
d. 4 
e. 6 
f. 2 
g. 5 

1.6 Mathematical Treatment of Measurement Results [Go to section 1.6] 

29. The label on a soft drink bottle gives the volume in two units: 2.0 L and 67.6 fl oz. Use this infor-
mation to derive a conversion factor between the English and metric units. How many significant 
figures can you justify in your conversion factor? 
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30. The label on a box of cereal gives the mass of cereal in two units: 978 grams and 34.5 oz. Use this 
information to find a conversion factor between the English and metric units. How many signifi-
cant figures can you justify in your conversion factor? 

31. How many milliliters of a soft drink are contained in a 12.0-oz can? 
32. A barrel of oil is exactly 42 gal. How many liters of oil are in a barrel? 
33. Many medical laboratory tests are run using 5.0 μL blood serum. What is this volume in milliliters? 
34. Milk is sold by the liter in many countries. What is the volume of exactly 1/2 gal of milk in liters? 
35. Gasoline is sold by the liter in many countries. How many liters are required to fill a 12.0-gal gas 

tank? 
36. Calculate these volumes. 

a. What is the volume of 25 g iodine, density = 4.93 g/ ? 

b. What is the volume of 3.28 g gaseous hydrogen, density = 0.089 g/L? 

Show Selected Solutions 

29. 2 
31. 355 mL 
33. 5.0 x  mL 

35. 45.4 L 
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